

Servicio General de Apoyo a la Investigación - SAI

Universidad Zaragoza

Servicio de Medidas Físicas

CURSO PPMS Y OPCIONES

10-19 Marzo 2015

Opciones Medidas Magnéticas

1

Esquema Curso

- MODULO0: Functionamiento PPMS
- MODULO1: Opciones Medidas Magnéticas
 - » Opción VSM
 - » Opción ACMS
 - » Opción TS
- MODULO2: Opciones Medidas Térmicas
 - » Opción HC» Opción TTO
- MODULO3: Opciones Medidas Eléctricas
 - » Opción Resistividad DC
 - » Opción ACT

Consulta de dudas y cuestiones

- Servicio de Medidas Físicas
 - Preguntar personal servicio
 - Página web SMF http://sai.unizar.es/medidas/index.html
- Manual del equipo
 - Descripción parámetros
 - Guías para resolución de problemas
- Página web QD www.qdusa.com
 - application notes
 - service notes

Servicio General de Apoyo a la Investigación - SAI

Universidad Zaragoza

Servicio de Medidas Físicas

CURSO USO DEL EQUIPO PPMS Y OPCIONES

M1: Opciones Medidas Magnéticas

Opciones Medidas Magnéticas

Medidas Magnéticas

- "Propiedades magnéticas" = comportamiento en un campo magnético
- •Todos los materiales tienen propiedades magnéticas
- Areas de estudio: Física, Ciencia de Materiales, Química, Ingeniería, Biología, Geología....
- •Aplicaciones actuales del estudio de propiedades magnéticas:
 - medios de grabación y reprodución magnética,
 - superconductores de alta Tc
 - motores eléctricos
 - imanes permanentes
 - imanes superconductores
 - líneas de transmisión superconductoras,
 - etc...

Introdución: Magnetismo

- Cada material presenta algún tipo de comportamiento magnético.
 - Usualmente: magnético = imán

- Un magnetómetro mide el momento magnético que canadad de magnetismo de una muestra.
- Estudiando la variación de la imanación con la temperatura o la intensidad del campo magnético se determina el tipo de magnetismo de la muestra
 - M(H), M(T)

Introdución: Magnetismo

- Magnitudes características
 - Campo magnético, H
 - Imanación, M \rightarrow M = XH
 - Densidad de Flujo, B \rightarrow B = μ H
 - Susceptibilidad, X
 - Permeabilidad, μ

```
Relacionadas por (cgs):
```

```
B = H + 4\pi M = \mu H\mu = 1 + 4\pi XM = XH
```

Introdución: Magnetismo

Resumen de la dependencia de la T de la M, X y X⁻¹ en varios tipos de materiales magnéticos.

8

Introdución: Unidades

cgs (Gausiano)	SI
B = H + 4πM	$B = \mu_0(H + M) = \mu_0H + J$
X = M/H	$\kappa = M/H$
μ ₀ = 1	$\mu_0 = 4\pi x 10^{-7} \text{ Tm/A}$
μ _B = 9.2741 10 ⁻²¹ erg/G	$\mu_B = 9.2741 \ 10^{-24} \text{ J/T}$

Referencia: 'Comments on Units in Magnetism', L.H. Bennett et al., Journal of Research of the National Bureau of Standards, Vol. 83, No. 1, 1978

Introdución: Unidades

cgs	\rightarrow X \rightarrow	SI	
B(G)	10-4	B(T)	
H(Oe)	10 ³ /4π	H(A/m)	
X(emu/cm ³) Sin dimensiones	4π	K Sin dimensiones	
X _ρ (emu/g=cm³/g)	4πx10 ⁻³	κ _ρ (m³/kg)	
X _{mol} (emu/mol=cm ³ /mol)	4πx10 ⁻⁶	κ _ρ (m³/mol)	
m(erg/G)	10 ⁻³	m(J/T=Am ²)	
M(G or Oe)	10 ³	M(A/m)	
N Sin dimensiones	1/ 4π	N Sin dimensiones	
M(μ _B /atom or μ _B /fu)	1	$M(\mu_B/atom or \mu_B/fu)$	

Introdución: Unidades

PPMS utiliza el cgs, y las magnitudes las da en 'emu's' (electromagnetic unit).

DC: m(emu)

• AC: m'(emu), m''(emu) fase y contrafase con H = $h_0 \cos \omega t$ m(emu):

M (G) = m(emu)/V(cm³) M (μ_{B} /atom) = M(emu) $\overline{\mu}_{R} \cdot N_{A} \cdot N^{\circ}$ moles $\cdot N^{\circ}$ átomos / fu

m', m"(emu): $X' = (m'/V(cm^3))/h_0$ $X'_{mol} = (m'/N^{o}moles)/h_0$ $X''_{mol} = (m''/N^{o}moles)/h_0$ h_0

 $X'' = (m''/V(cm^3))/h_0$

Opciones de Medida

- Medidas Magnéticas
 - VSM: Magnetómetro de muestra vibrante
 - ACMS: Magnetómetro AC y DC de extracción
 - TS: Susceptibilidad magnética transversal
 - AFM/MFM: Microscopía de Fuerza Atómica y Fuerza Magnética
- Medidas Térmicas
 - HC: Capacidad calorífica
 - TTO: Conductividad térmica
- Medidas Eléctricas
 - ResDC: Resistividad eléctrica DC
 - ACT: Conductividad eléctrica AC

- Principio de Operación
- Hardware
- Preparación e instalación de muestras
- Medidas: parámetros y secuencias
- Interpretación de resultados
- Opción horno

Vibrating Sample Magnetometer

VSM

- Magnetómetro DC
 - Imanación (H,T)
 - Método muestra vibrante
 - 1.9K 1000 K
 - 0 a ±14 T
 - Rápido (1 Hz)
 - Medidas en rampa H y T
 - Sensible (10⁻⁶ emu)
 - Minimiza efectos variación H (2 mmm amplitud)

VSM: Principio de operación

Vibración en la muestra induce Una señal en la bobina:

 $V_{coil} = -d\Phi/dt = -(d\Phi/dz) (dz/dt)$

= C **m** A
$$\omega$$
 sin(ω t)

C : constante de acoplamiento

- **m** : momento magnético muestra
- A : amplitud de vibración

 ω : frecuencia

VSM tradicional (S. Foner, RSI, 1959)

Opciones Medidas Magnéticas

VSM: limitaciones

- Ruido acústico (vibración varilla)
 - Afecta a estados magnéticos delicados (anclaje de flujo en SC, dominios magnéticos en débil FM)
 - Background, limita precisión medida ~10⁻⁶ emu/tesla
- Limitaciones masa debido a alta aceleración
- Pequeñas oscilaciones no revelan inhomogeneidades en la densidad magnética
 - No detecta un posible background no uniforme debido al portamuestras o encapsulado
 - Reduce posibilidades de diagnóstico del ajuste

VSM hardware

Opciones Medidas Magnéticas

Recorrido ~6.5 cm

LBC LargeBore Coilset

imanes Set bobinas/ termómetro

Opciones Medidas Magnéticas

motor

VSM hardware

Coilsets

- estándar (apertura 6 mm)
 - 7e⁻⁷ emu nivel ruido (promedio 1s)
 - Muestras > 4 mm producen rozamiento
 - Calentamiento a baja T
 - Aumento nivel ruido
- LBC (apertura 12 mm)
 - 1e⁻⁷ emu nivel ruido
 - Muestras hasta 1 cm
 - Region uniforme de detección
 - Background (señal parásita) con campo mayor

VSM hardware

- 5.8 N (590 grams) per amp
- NOTE: Residual (vertical) field along axis ~ 250 gauss
- 0.6 Tesla in gap
- 1.5 to 2 Tesla in iron

S

N

S

VSM HW

Nominal Drive: 4 mm p-p @ 40 Hz

diaphragm springs 530,000 N/m radial 90 N/m vertical

Slider 0.027 kg (4 mm p-p osc)

magnet banks 8.8 kg (0.012 mm p-p osc)

main spring ~ 6,000 N/m

Vertical transmitted force: 0.04 N p-p

Opciones Medidas Magnéticas

VSM hardware

Módulo motor

- Control motor: posición DC y AC
- Detección lock-in de la oscilación
 - Determina la amplitud con precisión mejor que 0.1 μm
- Se puede monitorizar la posición (BNC)
- Módulo detección
 - Digitaliza el voltaje ac de la bobina tras amplificación
 - 40x preamplificación (PPMS probe head)
 - 1,10,100, o 1000 en el module
 - Medida lock-in usando la posición del motor como referencia
 - Lectura termómetro

VSM preparación muestras

- Evitar contaminar la muestra
 - No cortar/manejar con herramientas magnéticas
 - Limpiar muestra, portamuestra y sitio de trabajo: polvo tiene ~5% Fe !
- Anchura muestra menor que portamuestras
- Longitud <4mm para mejor precisión
 - Ver tabla manual
 - Programa VSMcoilcalc.exe

Preparación muestras

VSM

SAMPLE DIMENSIONS		PEAK AMPLITUDE OF SAMPLE OSCILLATION			
Length L (mm)	Diameter D (mm)	0.5 mm	1.0 mm	2.0 mm	
0	0	1.0000	1.0000	1.0000	
0	1	1.0003	1.0005	1.0014	
0	2	1.0007	1.0017	1.0053	
0	3	1.0005	1.0026	1.0109	
1	0	0.9996	0.9993	0.9981	
1	1	0.9999	0.9999	0.9996	
1	2	1.0007	1.0013	1.0037	
1	3	1.0010	1.0028	1.0097	
2	0	0.9978	0.9966	0.9921	
2	1	0.9985	0.9975	0.9937	
2	2	1.0002	0.9999	0.9986	
2	3	1.0020	1.0029	1.0059	
3	0	0.9933	0.9906	0.9808	
3	1	0.9944	0.9920	0.9828	
3	2	0.9976	0.9958	0.9887	
3	3	1.0020	1.0013	0.9980	
5	0	0.9662	0.9597	0.9367	
5	1	0.9687	0.9622	0.9394	
5	2	0.9759	0.9698	0.9476	
5	3	0.9877	0.9820	0.9613	
10	0	0.6961	0.6889	0.6647	
10	1	0.6988	0.6914	0.6669	
10	2	0.7070	0.6993	0.6737	
10	3	0.7213	0.7130	0.6854	

VSM preparación muestras

- Portamuestras uniforme y no magnético
- Fuerte sujección muestra que aguante altas aceleraciones y temperaturas extremas

A=2mm, f=40 Hz

acel. = $A^*(2\pi f)^2 = 126 \text{ m/sec}^2 > 12x$ "g"

• ver <u>QD AN 1096-306</u>

VSM portamuestras (1.9 – 400 K)

- porta cuarzo 4 mm (media caña)
 - Ideal para muestras planas
 - Pegar con barniz o usar kapton

Porta aluminio para láminas delgadas

Porta latón (medio tubo)

- Ideal para muestras cilíndricas
 - 3 4 mm diam. Estándar
 - 5.5 mm LBC
- Muestras planas entre cilindros cuarzo
- Muestras en polvo en cápsulas
- Las muestras se pueden sujetar sin adhesivo

VSM portamuestras (1.9 – 400 K)

- Cápsulas polvo
 - polipropileno
 - 2 piezas por muestra
 - background depende de la separacion entre las dos partes
- Pajitas (solo para LBC)
 - Cápsula gelatina o policarbonato

 – Portamuestras plano plástico Opciones Medidas Magnéticas

VSM portamuestras (1.9 – 400 K): dificultades

- Montaje muestras perpendicular

 Usar pegamento además de los cilindros
 Otros diseños?

 Muestras líquidas

 Portamuestras de polvo son difíciles de sellar
 - Cápsulas policarbonato y/o gelatina selladas con grasa (o teflon)
 - Evitar burbujas!

Instalación muestra

- Colocar el portamuestras firmemente en la varilla
- Inspeccionar que la varilla esté recta (evitar rozamientos en el coilset)
- Chequear si no hay roturas en las uniones azules o en el portamuestras de cuarzo
- Usar el asistente de instalación de la muestra
- Usar purga extendida y verificar que la presión es baja

VSM centrado muestra

- sample offset : distancia de la muestra al extremo inferior de portamuestras
 - 35 mm ± 2 mm
 - Determinado manualmente o mediante un scan de la señal a lo largo del recorrido del motor
- El offset value es prácticamente independiente de la temperatura

VSM sample offset

- Altura bobina respecto al puck C (40.1 mm)
- sample offset S medido por el usuario (35 mm)
- El motor determina su localización:
 - **z** = "Center Position"
 - $= \mathbf{T}\mathbf{D} + (\mathbf{C} \mathbf{S})$
 - TouchDown (TD) varía conT \rightarrow centrado automático en el proceso de medida

VSM sample offset

Opciones Medidas Magnéticas

VSM sample offset

Medidas

- 'Single' o 'Continuous'
 - Single: medida síncrona (10-14")
 - Continuous: medida asíncrona
- Centrado: touchdown
 - Scan T: necesario
 - scan H o scan t: cuando hay un gradiente de T en la cámara
- Parámetros: amplitud y frecuencia
 - Señal α A y $\omega,$ ruido a alto H α $A\omega^2$
 - − 40 Hz (altos H, bajas T $\rightarrow \omega \downarrow$ ruido \downarrow)
 - 2 mm
- Rango:
 - Sticky autorange: ruido debido al imán cuando dM/dH¹
 - Fixed autorange: imán 14 T (o medir modo estable entre -2T y 2T)

Ejemplos secuencias

M(H) 5-quadrant SWEEPING.seq

- "5-quad": curva magnetización inicial y ciclo, +H –H +H
- Modo de medida más rápido: Medida continua variando campo magnético en modo rampa.
- no touchdowns: se supone T estable > 1 hora
- *sticky* autorange: cambiar a fijo en casos de FM con fuerte pendiente M(H)

M(H) 5-quadrant STEPPING.seq

- Espaciado campo uniforme, campo estático en modo conducido en cada campo
- no touchdowns
- sticky autorange: siempre OK cuando se mide en pasos

M(T) 300 to 20 to 300 K SWEEPING.seq

- Bajando y subiendo T a 1 K/min
- touchdowns ON!
- Medida continua, promedio 10 s (mucho? aún 1681 puntos)
- Falta un comando Set Field

M(T) 300 to 20 to 300 K STEPPING.seq

- T estable en cada punto (llegamos a cada T a 5 K/min)
- Advanced setting: espera 60 s. a cada T antes medir
- Espaciado uniforme de T (otros posibles T², \sqrt{T} , 1/T, logT)
Resultados

VSM .DAT file

- Señal VSM a lo largo del proceso:
 - at coils
 - after gains/phasors
 - after T-dependent phasors (image effect, shrinkage)
- center position: NOT sample offset, coordenadas del motor (top=65mm, touchdown ~ 5)
 transport action:
 - -1 = measure
 - -2 = touchdown
- Ver Tabla 7-2 en el manual VSM

Record #8 of Pd_test_feb3.dat						
-	Field Name	Field Value				
1	Time Stamp (minutes,relative)	1.753				
2	Temperature (K)	297.9976807				
3	Magnetic Field (Oe)	19999.957				
4	Moment (emu)	0.023819140748505				
5	M. Std. Err. (emu)	1.7173972796473E-6				
6	Transport Action	1				
7	Averaging Time (sec)	1.99338665628444				
8	Frequency (Hz)	40.1327056884766				
9	Peak Amplitude (mm)	3.50826884720579				
10	Center Position (mm)	16.3700013048947				
11	Coil Signal' (mV)	0.48234437369868				
12	Coil Signal'' (mV)	0.0424584059366129				
13	Range (mV)	2.5				
14	M. Quad. Signal (emu)	-3.6741538221402E-5				
15	M. Raw' (emu)	0.0238185055336739				
16	M. Raw'' (emu)	-2.20462902304383E-5				
17	Min. Temperature (K)	297.9976807				
18	Max. Temperature (K)	297.9976807				
19	Min. Field (Oe)	19999.957				
20	Max. Field (Oe)	19999.957				
21	Mass (grams)	46.1012316927549				
22	Motor Lag (deg)	15.6869519384141				
23	Pressure (Torr)	0.0049				
24	VSM Status (code)	0				
25	Motor Status (code)	0				
26	Measure Status (code)	0				
27	PPMS Status (code)	4369				
28	System Temp. (K)	299.9308				
29	System Field (Oe)	19999.957				
30	Pressure ()	12.628277				
31	Map 25 ()	297.9976807				

Opciones Medidas Magnéticas

Next>>

- Momento: background slope subtraction
 - Contribución portamuestras
 - Señal parásita VSM
- Field: corregir los efectos de la remanencia del imán
 - ver AN 1070-207
- Momento: corrección del valor del momento función de la amplitud

Posibles señales parásitas del VSM

- Altos campos magnéticos
 - Momento aparente debido al synchronous pick-up
 - Mayor nivel de ruido debido a la vibración asíncrona
- Ruido debido a la fricción
 - escala con la fuerza de vibración~ mass* $A^*\omega^2$
 - Mayor a bajas T: superficies más duras
 - Señal independiente del campo (pequeña)
 - "crosstalk" entre el motor y la detección
 - offset <1e⁻⁶ emu constante para una A y ω dadas

Mitigación señales parásitas

- Evitar roce en el coilset
 - Varilla y portamuestras rectos
 - Limpiar los centradores azules y reemplazarlos si están usados
 - Diámetro muestra< (coil set bore) 2mm
 - Ruido o calentamiento a baja T:
 - Chequear fugas en la cámara de la muestra
 - Purga extendida
 - Testear la fricción del motor
 - travel de 65 mm a <10 mm, hysteresis uniforme y < 30 mA
 - Usar LBC (12mm)

Mitigación señales parásitas

- Cambiar la frecuencia de vibración
 Señal bobina VSM~ A*ω
 - usar 2A y $\omega/2$ da la misma señal, $\frac{1}{2}$ fuerza
 - e.g. 40 Hz, 2 mm \rightarrow 20 Hz, 4 mm
 - Frecuencias típicas en el rango 20 45 Hz
 - Acústica dewar/VSM es diferente en cada sistema. 40 Hz mejor frecuencia en promedio

Otros artefactos

- 1 : contribución 60 80 K
 - error corrección image effect
 - Debe ser < 0.2%</p>
 - M.Raw(prime) muestra los datos sin corregir, verificar
 - 2 : steps y/o gaps en los datos
 - touchdown operation (action=2)
 - Los saltos son grandes cuando la señal de la muestra o el background varía mucho con z
 - ver VSM AN 1096-305

Otros artefactos

Pico en torno 40 – 50 K

- Orden magnético Oxígeno
- Evitar contaminación con aire
- No usar materiales porosos en el montaje (no usar cinta teflón)
- ver MPMS AN 1014-210
- Ruido en m y valor alto en la señal de cuadratura
 - Mala sujección muestra, no sigue la señal sin(ω t) del motor
 - ver VSM AN 1096-303
 - "ciclo histéresis invertido" M(H) en materiales magnéticos blandos
 - Remanencia muestra es negativa tras ir a campos positivos
 - ver PPMS AN 1070-207

Horno VSM

- •Opción VSM extiende el rango de T hasta 1000 K
- •Se calienta únicamente el portamuestras
- Medida en condición de alto vacío
- •Velocidad calentamiento hasta 200 K/min
- Enfriamiento por radiación térmica
- •No puede medir T < 300 K
- Ver informe horno VSM en la página web SMF
 <u>hornoVSM</u>

Horno VSM HW

Varilla horno, conector superior de 5 cables que van al portamuestras Portamuestras (stick) se conecta en la parte inferior de la varilla Portamuestras con muestra estándar Ni

Horno VSM HW

- Se usa el coilset estandar VSM
- Cámara de la muestra PPMS 295 K en alto vacío
- Se calienta una pequeña zona del portamuestras
 - únicamente ~1 gramo portamuestras llega a 1000 K
 - Respuesta térmica muy rápida
- Cerámica de baja conductividad térmica aisla el portamuestras
 - Parte superior (conector) ~ 310 K
- Termómetro incorporado en el portamuestras
- Portamuestras fácil de cambiar
- Puede llegar a 1100 K (Fe Tc = 1043 K)
 - Disminuye la vida del portamuestras (muy caro 925 €)

Horno: Preparación muestras

VSM

- Muestras finas (<1mm espesor)
 - Ideal: lámina delgada 3mmx3mm
 - Alto gradiente térmico entre stick y Cu
 - T uniforme en la muestra
- La muestra se pega al stick con cemento (Zircar)
 Parte heater (termómetro NO)
 - Se envuelve con una lámina de cobre (50 mm espesor)
 - limpio y brillante (baja emisividad térmica)

horno VSM portamuestras

horno VSM portamuestras

Control Temperatura

- El error absoluto de temperatura es máximo en torno a la Tc del Ni, Tc = 627 K
- Calibración: medida Tc = 621 K, error menor 1%
- En teoría:
 - 300-600 K:mala conductividad térmica zirconia, termómetro más frío que la muestra (calentador)
 - 600-1000 K: r~T⁴ homogeniza temperaturas parte superior e inferior

Servicio General de Apoyo a la Investigación - SAI

Universidad Zaragoza

Servicio de Medidas Físicas

CURSO USO DEL EQUIPO PPMS Y OPCIONES

M1: Opciones Medidas Magnéticas

Opciones de Medida

Medidas Magnéticas

- VSM: Magnetómetro de muestra vibrante
- ACMS: Magnetómetro AC y DC de extracción
- TS: Susceptibilidad magnética transversal
- AFM/MFM: Microscopía de Fuerza Atómica y Fuerza Magnética
- Medidas Térmicas
 - HC: Capacidad calorífica
 - TTO: Conductividad térmica
- Medidas Eléctricas
 - ResDC: Resistividad eléctrica DC
 - ACT: Conductividad eléctrica AC

 Medidas ad hoc (custom-made): control externo de instrumentos

Opción ACMS Esquema

- Principio de Operación
- Hardware
- Preparación e instalación de muestras
- Medidas: parámetros y secuencias
- Interpretación de resultados

AC Measurement System

Susceptómetro AC y Magnetómetro DC

- AC: χ_{ac}(ω,h_{ac},T)
 - 10 Hz a 10kHz
 - H_{ac} = 2mOe a 17 Oe
 - 1.9 K a 350 K
 - Alta sensibilidad: 5x10⁻⁸ emu (10 kHz)
 - Anula background en cada punto
 - Medida de armónicos (hasta 10)

DC: Imanación(H,T)

- Método extracción
- Rango: 2.5x10⁻⁵ emu to 5 emu
- 1.9 K a 350 K
- 0 a ±14 T

DC vs AC

- "Susceptibilidad" = χ = pendiente curva M/H
 - DC: X absoluta Xdc = M/H
 - AC: X local xac= dM/dH

Principio de Operación DC

- Método extracción : la muestra se mueve rápidamente a traves de un set de bobinas produciendo una señal característica
- Forma de onda es analizada por SW y se calcula el momento magnético que la genera

Principio de Operación DC

- El offset en el voltaje da lugar a una pendiente en el flujo Φ(x) al integrarse
 - El offset se substrae antes de analizar la integral
- Centro muestra: centro inversión curva Φ(x)
- Medida ACMS guarda las curvas del movimiento de la muestra de arriba a abajo (+2.8 to – 2.2 cm) en el fichero .raw
- Curva estándar de medida DC
 con centro inversión en x=0.

Proceso medida DC

- 1) Fija ganancia (auto, sticky, fixed)
- 2) Mueve el transporte al fondo
- 3) Extrae la muestra (~ 1 m/s), lee voltaje(time)
 - Asume que el transporte se mueve a velocidad uniforme
 - Asume que la muestra se mueve con el transporte
- 4) Si el digitalizador se satura, reduce la ganancia y repite el proceso
- 5) Ajuste usando la waveform de referencia (dcemu.cal)
- 6) Aplica correcciones: efecto imágenes, ganancia

Principio de Operación AC

Bobina de excitación: Hac Bobina de detección: mac

Principio de Operación AC

5-point "BTBCC"

- B, T, C variables vectoriales (in-phase, quad.)...
- $(B2 B1)/(t_{B2} t_{B1}) = deriva (térmica)$
 - Se puede corregir la deriva térmica, pero para una mejor precisión es mejor variar T despacio o estabilizar en T
 - Aplica la corrección por deriva a T1 \rightarrow T1'
 - Substrae las señales de las bobinas de calibración : C1 C2 $\rightarrow \Pi_{CC}$ factor corrección
 - C1, C2 el desbalance parece una señal paramagnética
 - Elimina desfase debido al instrumento

(muestras con una $\chi^{\prime\prime}$ grande se tienen que centrar con gran precisión)

AC moment = $(B1 - T1')^* \Pi_{CC} * \Pi_{image} * \Pi_{HW} * C$

- Π_{image} = Corrección 'image effect' (edddy current screening in chamber)
- $\Pi_{HW} = otras correcciones HW$
 - C = factor calibración ACMS

ACMS Hardware

ACMS Hardware Coilset: AC vs DC

 Bobinas necesarias para las medidas AC
 Únicamente las bobinas de detección son necesarias para las medidas DC por extracción

ACMS Hardware

ACMS Hardware

Preparación e Instalación muestras

Muestra se coloca al extremo del portamuestras

- La muestra debe quedar por debajo de las bobinas para el centrado tanto AC como DC
- Hay un efecto en la señal debido a la inhomogeneidad del portamuestras
- DC extracción: gran aceleración
 - Fijar muestra fuertemente
 - AC: aceleración pequeña

measured moment (arb. units

Preparación e Instalación muestras

Preparación e Instalación muestras

Altura muestra <5mm (bobinas son de 18 mm altura)

Preparación e Instalación muestras

ACMS

- El bucket se enrosca en la varilla sujetando la muestra
- Muestras sólidas o en polvo
- Alta señal de background debida al plástico y la fibra de carbono
 - No usar para muestras con poca señal

Preparación e Instalación muestras

ACMS

- Rosca más fina
- Deja cavidad
 - Se tiene que inmovilizar la muestra (problema para medidas DC)
 - Aplicando grasa en la rosca puede sellar líquidos
 - Testear estanqueidad!
- Alto background

Centrado muestra

ACMS

'Sample location'

Centrado AC

Mueve la muestra en pasos a través de la bobina de detección mientras aplica el campo Hac \rightarrow detecta la amplitud AC en función de la posición.

Centrado DC

- Extracción muestra a lo largo de todo el recorrido→ detecta voltaje DC función posición
- Requiere un campo Hdc en la mayoría de las muestras
- Resultado debería ser similar.
- Posición muestra cambia con la temperatura
- Center location entre -0.4 y +0.4 (bucket +0.5 OK)

	C DC Extract	o <mark>te Samp</mark> od on ion	le O Specify I	Location	
	Parameters Amplitude Frequency Scans Location	10 1000 25 0.0)e Iz m	
az ACN	Locate MS Control Cent	Save	Close	m Help	x
Datafi	ile Sample Pro	perties W	'aveforms A	idvanced Co	onfigure
Ampl	itude = 15.45mV Sample Center c	ompleted a	t 1X Gain		
ACMS Medidas

• DC

- Análisis linear vs. non-linear
 - Linear mode: sample center = location (< 10^{-3} emu)
 - Non-linear mode: DC position es una variable usada en el cálculo para el ajuste (m > 10⁻² emu)
- (ver AN 1084-310)
- AC
 - Compromiso T, A, ω y tiempo
 - Usar medidas 5 puntos
 - Corrige derivas
 - Calibra la fase y amplitud

MEASUREMENT MODE	WHERE MEASUREMENTS ARE TAKEN	SUGGESTED USE
Five Point	 Bottom detection coil Top detection coil Bottom detection coil Center of coil array Center of coil array 	Use for most accurate phase and calibration information. Use if temperature is unstable or if temperature will change during measurement. Bottom-top- bottom measurement cancels effect of tempera- ture drift.
Four Point	 Bottom detection coil Top detection coil Center of coil array Center of coil array 	Use for accurate phase and calibration informa- tion if temperature is stable and will not change during measurement.
Three Point	 Bottom detection coil Top detection coil Bottom detection coil 	Use for faster, but less accurate, measurements. Three-point measurement uses calibration from previous four- or five-point measurement. Fou must have run a four- or five-point measurement prior to running a three-point measurement.
Two Point	(1) Bottom detection coil (2) Top detection coil	Use for faster, but less accurate, measurements. Two-point measurement uses calibration from previous four- or five-point measurement. Fou must have run a four- or five-point measurement prior to running a nvo-point measurement.
One Point	(1) Bottom detection coil	Use for fastest, but least accurate, measurements. One-point measurement uses calibration from previous four- or five-point measurement. Fou must have run a four- or five-point measurement prior to running a one-point measurement.

	Table 4-4. Maxim	um AC Field Am	plitude (Oe) to A	void Warming	
			Frequer	ncy (Hz)	
Measurement	Temperature				
Time (sec)	(K)	10	100	1,000	10,000
	1.9	10	10	10	3.5
	4	17	17	17	6
0.1	10	17	17	17	17
	20	17	17	17	17
	25	17	17	17	17
	1.9	5	5	4	1
	4	10	8	8	3
1	10	17	17	17	10
	20	17	17	17	17
	25	17	17	17	17
	1.9	3	3	2.5	1
	4	10	6	6	2
10	10	14	14	14	6
	50	17	17	17	14
	25	17	17	17	17

Opciones Medidas Magnéticas

ACMS Secuencias

- 5Pt-AC.seq
 - Medida AC por 5 puntos repetida 30 veces a cada frecuencia
- Xac(T,ω).seq
 - Medida AC por 5 puntos en función de la frecuencia a baja T
- Delrin bucket background.seq
 - Medida DC: M(H) y M(T) usando modo lineal y no lineal

ACMS Interpretación datos

- Ficheros de datos
 - *.DAT: valor final procesado de la respuesta magnética
 - *.RAW: curvas de voltaje originales
- Posibles artefactos
 - Magnetismo oxígeno: 43 54 K
 - Desfase debido al Inconel (feedthroughs):25 -35 K. Ver AN AR04.
 - Efecto 'imagen' debido al cobre de la cámara de la muestra
- Validar con muestras estándar (calibrantes)

ACMS Interpretación datos

*.DAT file

Cantidades AC o DC únicamente

- Amplitude(Oe): valor pico de amplitud campo magnético AC
- *M-DC*: momento DC
- $M'(emu) = \chi' \cdot Amplitud$
- *Moment(emu)* = $\sqrt{\{(M')^2 + (M'')^2\}}$: magnitud momento AC
- *Phase(deg)*: fase relativa a una respuesta paramagnética
- Sample Center(cm): sample location (cero es la posición ideal) del último centrado
- DC Position(cm): determindado del ajuste a la curva de extracción; irregularidades indican que el algoritmo no encuentra la muestra de forma fiable

ACMS Interpretación datos *.RAW file

Cantidades AC o DC únicamente

- *Position(cm)*: posición motor durante extracción *Signal(mV)*: en AC, muestra la forma final obtenida tras análisis por N-puntos; en DC, el voltaje durante la extracción
 - DC: pintar señal vs. posición para ver si hay problemas (pegado muestra, cargas estáticas, motor)
 - AC: pintar señal vs tiempo para ver la forma de onda AC (distorsión por interferencias de armónicos)

Servicio General de Apoyo a la Investigación - SAI

Servicio de Medidas Físicas

CURSO USO DEL EQUIPO PPMS Y OPCIONES

Opción TS Adriana I. Figueroa García

Outline

- Theoretical framework of TS
- TS measurement systems developed up to date
- TS setup at SMF
 - Hardware
 - Sample preparation
 - Measurement process
 - Software
- Examples
- Practicals

Magnetic Susceptibility, χ

- Defined as the degree of magnetization of a material in response to an applied magnetic field $\chi_{dc} = \frac{M}{H_{dc}}$
 - Equilibrium magnetic properties:
 - Timescale of magnetization processes:
 - Some valuable information obtained from χ_{ac} measurements:
 - Spin dynamics
 - Phase transitions
 - Relaxation in NPs systems
 - Particle interactions

Mutual inductance ac susceptometer

IMPORTANT: χ is a tensor!

Transverse susceptibility - TS

 Susceptibility tensor for a single SW particle

$$\chi_{ij} = \left(\frac{dM_i}{dH_j}\right)$$

longitudinal

 $\chi_L = \left(\frac{dM_z}{dH_z}\right)$

 TS: measurement of the magnetic susceptibility in one direction while an external magnetic field is applied perpendicular to the measurement direction ×

[1] A. Aharoni, et al. Bull. Res. Counc. of Israel. 6A 215 (1957)

Transverse susceptibility - TS

Aharoni *et al.* arrived at the expression for the H_{DC}dependent TS of a single Stoner – Wohlfarth particle:

$$\chi_t = \frac{3}{2} \chi_0 \left(\cos^2 \phi_K \frac{\cos^2 \theta_M}{h \cos \theta_M + \cos 2(\theta_M + \theta_K)} + \sin^2 \phi_K \frac{\sin(\theta_K - \theta_M)}{h \sin \theta_K} \right)$$

[1] A. Aharoni, et al. Bull. Res. Counc. of Israel. 6A 215 (1957)

Transverse susceptibility – TS Direct probe of H_K

- Study of:
 - Magnetic anisotropy
 - Magnetization reversal processes
 - Magnetic transitions
- Strongly influenced by:
 - Interparticle interaction
 - Texture
 - Anisotropy field distribution NPs

Typical TS unipolar curve for a collection of randomly oriented

$$H_{\kappa} = \frac{2K_{eff}}{M_{s}}$$

TS Measurement techniques

Conventional electromagnet setup

[2] L. Pareti and G. Turilli. *J. Appl. Phys.*61, 5098 (1987)
[3] A. Hoare, *et. al. J. Phys. D: Appl. Phys.*26, 461-468 (1993)

Magneto-optical setup

[4] M.C. Contreras, *et. al. J. Magn. Magn. Mater.* **175**, 64-78 (1997)

Direct measurement of $\chi_{T} = \left(\frac{1}{2}\right)^{2}$

RF – TS measurement system for the PPMS Self-resonant methods to measure TS

RF – TS measurement system for the PPMS Self-resonant methods to measure TS

We measure a change in frequency from +H^{sat} to -H^{sat}, and viceversa

$$\frac{\Delta \chi_T}{\chi_T} \% \propto \frac{\Delta f}{f} \% = \frac{\left[f(H) - f^{Sat}\right]}{f^{Sat}} \times 100$$

TDO based circuit

[5] H. Srikanth, J. Wiggins, and H. Rees, *Rev. Sci. Instrum.* **70**, 3097 (1999).

CMOS cross coupled circuit

[6] P. A. Martínez and B. M. Monge, *Int. J. Electron.* 92, 619 (2005)
[7] A. I. Figueroa *et al.*, *J. Magn. Magn. Mater.* 324, 2669 (2012)

TS measurement system at the SAI-Unizar PPMS-9T

[7] <u>A. I. Figueroa</u>, J. Bartolomé, J. M. García del Pozo, A. Arauzo, E. Guerrero, P. Téllez, F. Bartolomé, L. M. García. *J. Magn. Magn. Mater.* 324, 2669-2675 (2012).

TS measurement system at the SAI-Unizar MFP for the PPMS

- Multifunctional probe for the PPMS adapte to hold the RF oscillating circuit
- T and H_{DC} control
 - T = 1.8K 400K
 - $\mu_0 H_{DC} = 0 14 T$

TS measurement system at the SAI-Unizar CMOS cross coupled oscillator circuit

TS measurement system at the SAI-Unizar Resonance frequency

TS measurement system at the SAI-Unizar Plug-in coil - sample holder

Coil dimensions designed to hold a conventional gel-cap for SQUID and PPMS measurements

TS measurement system at the SAI-Unizar Sample specifications

Samples in powder form

Conventional gel-cap for SQUID and PPMS measurements D=5 mm

Films

Different configurations limited by dimensions of the coil

Sensitivity: 2x10⁻⁶ emu

TS measurement system at the SAI-Unizar Sample specifications

Problematic samples

Samples with low magnetic signal

- Problems with the background signal of the empty coil

Conductive materials:

- high frequency applications require materials with high electrical resistivity to keep low eddy currents

Samples with some semiconducting substrates (Si)

Measurement Process

(1) Install insert

- (2) Plug in the frequency counter and power supply to the insert's head
- (3) Turn on all external equipment and adjust the voltage between V=6 V – 13 V until resonance
- (4) Prepare measurement sequence

Measurement Process (Empty Coil) Stability of the frequency – drift

Reduction of drift with time

This drift is easy to correct but let the circuit stabilize for a while.

- Measure the resonance frequency from +H^{sat} to -H^{sat}, and viceversa
- (2) Calculate the TS ratio

(1) Measure the resonance frequency from +H^{sat} to -H^{sat}, and viceversa

(3) Correct drift

(4) Repeat the procedure for different T

(4) Repeat the procedure for different T

Measurement Process Measurement at fixed, H as a function of T

- (1) Measure the frequency from T_i to T_f of the empty coil (background)
- (2) Repeat the procedure with the sample
- (3) Substract the background from the measurement with the sample

↓ PPMS MultiVu - Simulation Mode	
File View Sample Sequence Measure Graph Instrument Utilities	Help
Abort Selected Sequence: Example.seq Lock Sequence Idle Run Pause Abort Lock Marro Compile Macro	Macro1 (macro) - MultiVu Scripting [design] Image: Second seco
.BAS sequences programmed on BASIC language, linked to the PPMS MultiVu interface	1 '#Language "WWB-COM" Option Explicit Sub Main End Sub

(General)	Proc: M	ain		~
#Uses "MVUData.cls"				
#Uses "Utils\Utils.obm"				
tel. Hein				
bub Main				=
Const Address As Integer =	3 'GPIB address of instrument	Main p	program	
Debug.Clear			-	
Dim Fld As Double				
Dim Field As Double Dim fieldstate ds Levr				
Dim Temp As Double				
Dim tempstate As Long				
Dim Freq As Double				
-				
-				
Dim fl As New MVUData Dim d(4) As Double				
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad	dress, 13, 1) 'add Freg Me	ter to GPIB		
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad	dress, 13, 1) 'add Freq Me	ter to GPIB		
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad	dress, 13, 1) 'add Freq Me	ter to GPIB		
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos	dress, 13, 1) 'add Freq Me ZFC	ter to GPIB		
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos	dress, 13, 1) 'add Freq Me ZFC	ter to GPIB		
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ		
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ		
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVU0pen</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask myu to open the	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ	266_5k0e_1T.dat") Then ency (Hz)")]
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVUOpen Wait(1)</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask mvu to open the	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ file	266_5k0e_1T.dat") Then tency (Hz)")	
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVUOpen Wait(1) Init()</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask mvu to open the 'Inicializa frecuenc	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ file	C66_5k0e_1T.dat") Then tency (Hz)")]
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVUOpen Wait(1) Init() ConfigInput()</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask mvu to open the 'Inicializa frecuenc 'Configura frecuenci	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ file imetro metro]
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVUOpen Wait(1) Init() ConfigInput()</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask mvu to open the 'Inicializa frecuenci 'Configura frecuenci	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ file imetro metro	Create data file	
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVUOpen Wait(1) Init() ConfigInput()</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask mvu to open the 'Inicializa frecuenc 'Configura frecuenci	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ file imetro metro	Create data file	
<pre>Dim fl As New MVUData Dim d(4) As Double Dim result As Integer result = GPIB.AddDevice(Ad Fichero de datos para ciclos If fl.CreateFile("D:\Usuar fl.WriteHeader("Suscep End If fl.MVUOpen Wait(1) Init() ConfigInput() CICLO A 300K</pre>	dress, 13, 1) 'add Freq Me ZFC ios PPMS-9T\Adriana\XacTrans\Circu tibility Data File", "Temperature 'ask mvu to open the 'Inicializa frecuenc 'Configura frecuenci	ter to GPIB itoCMOS\20120612_M12 (K),Field (Oe),Frequ file imetro metro	Create data file]

```
20120524_P5389_300K (macro) - MultiVu Scripting [design]
🖹 🜈 🗐 🎒 🐰 🖺 🖺 🕰 😂 🗳 🕴 🕨 🖬 🖉 🔶 🐨 🖉
Object: (General)
                                                       Y
                                                           Proc: Main
    'CICLO A 300K
                                                                                                                   ~
        PPMS.SetTemperature(300,20.000000,0)
                                                                        Sequence to sweep H
        WaitFor(1+2*0+4*0+8*0,10,0)
                                           'Estabilizo T
                                                                                at a fixed T
    'AQUI COMIENZA EL CICLO HISTERESIS EN H
    'PRIMERO SE DEFINEN LOS PARAMETROS, Hi y Hf
    'DENTRO DE LOS BUCLES DE MEDIDA HAY QUE CAMBIAR LA CONDICION < 0 > DEPENDIENDO DE SI Hi es < o > que Hf
    'TRAMO O A 1 T
                                                                            Initial parameters
        Hi = 0.0
                                          'H inicial
        Hf = 10000.0000
                                           'H final
        PPMS.SetField(Hi,180.0,0,1) ' ramp to field at 180 Oe/sec, linear mode, driven
                                             ' wait for field
        WaitFor(0+2*1+4*0+8*0,60,0)
        PPMS.SetField(Hf,100.0,0,1)
                                  ' Pongo el campo final a 50 Oe/sec
    'COMIENZA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf
        Do
            'mvseq:scanT.seq>0003 Scan Temp
            DoEvents
            PPMS.GetField(Fld,fieldstate)
            PPMS.GetTemperature(Temp,tempstate)
            ReadFreq(Freq,s)
                                                 'Get GPIB data using GPIB.GetString or similar...
            Debug.Print Fld; Temp; Freq;
                                           'mvseg:scanT.seg>0003 Scan Temp
            d(0) = Timer
            d(1) = Temp
            d(2) = Fld
            d(3) = Freq
            fl.WriteLineArray("",d) 'write a line using an array
          Loop While Fld <= 0.999*Hf
                                             'condicion de medida hasta que se llega al H final
 < .
                                                                                                                >
                                                                                                                 128
```

```
Sequences for TS measurements
```

```
_ 🗆 🗙
  20120524_P5389_300K (macro) - MultiVu Scripting [design]
B 🖆 🗐 🎒 🐰 🗞 🛍 📖 🕰 😂 😽 🕨 🗉 🖉 🍪 🔶 🖼 📮 🗐 😭
Object: (General)
                                                             Proc: Main
                                                         ¥
                                                                                                                      v
     'TRAMO 1 T A -1 T
                                                                                                                      ~
2
        Hi = 10000.0
                                               'H inicial
         Hf = -10000.0000
                                              'H final
         PPMS.SetField(Hf,50.0,0,1) ' Pongo el campo final a 50 0e/sec
     'COMIENZA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf
        Do
             'mvseq:scanT.seq>0003 Scan Temp
             DoEvents
            PPMS.GetField(Fld,fieldstate)
            PPMS.GetTemperature(Temp,tempstate)
            ReadFreg(Freg,s)
                                                  'Get GPIB data using GPIB.GetString or similar...
            Debug.Print Fld; Temp; Freq; 'nvseq:scanT.seq>0003 Scan Temp
            d(0) = Timer
            d(1) = Temp
            d(2) = Fld
            d(3) = Freq
            fl.WriteLineArray("",d)
          Loop While Fld >= 0.999*Hf
                                      'condicion de medida hasta que se llega al H final
      'TRAMO -1T A 1 T
         Hi = -10000.0
                                             'H inicial
                                             'H final
        Hf = 10000.0000
         PPMS.SetField(Hf,50.0,0,1) ' Pongo el campo final a 50 0e/sec
     'COMIENZA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf
         Do
             'mvseq:scanT.seq>0003 Scan Temp
             DoEvents
            PPMS.GetField(Fld,fieldstate)
            PPMS.GetTemperature(Temp.tempstate)
 < ....
                                                                                                                   >
                                                                                                                    110
```

20120524_P5389_300K (macro) - MultiVu Scripting [design]			
<pre>int if if</pre>	2012052	4_P5389_300K (macro) - MultiVu Scripting [design]	
<pre>iect [General]</pre>	🖻 🖬 🕻	▋▟▏▓▝▙▝▙▏\$2 ♀ ▝誓▏▶ □ ਡ ④ & → ?፤ 〔፤ ⊄፤ @	
<pre>'TRAMO -IT A 1 T Hi = -10000.0 'H inicial Hf = 10000.0000 'H final PFMS.SetField(Hf, 50.0,0,1) ' Pongo el campo final a 50 0e/sec 'CONTENZA EL EUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf Do['mvseq:scanT.sec>0003 Scan Temp DoEvents PFMS.GetTelal(Fld,fieldstate) PENS.GetTelal(Fld,fieldstate) PENS.GetTel</pre>	ject: (Gener	al) Proc: Main	
Hi = -10000.0 'H inicial Hf = 10000.000 'H final PFHS.SetField(Hf,50.0,0,1) ' Pongo el campo final a 50 0e/sec 'CONIENZA EL EUCLE DE MEDIDA. FARA Hi < Hf, el Loop While va con Fld <= Hf. FARA Hi > Hf, el While va con Fld >=Hf Do['wvseq:scanT.secp0003 Scan Temp DoEvents PFMS.GetTemperature(Temp,tempstate) ReadTreq(Freq,s) 'Get GFIE data using GFIE.GetString or similar Debug.Frint Fld; Temp; Freq; 'mvseq:scanT.secp0003 Scan Temp d(0) = Timer d(1) = Timer d(2) = Fleq fl.WriteLineArray("",d) Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final PFMS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero ' 'FONGO LA T FINAL A 300K PFMS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End of main program End Sub	TRAN	IO -1T A 1 T	
<pre>PPHS.SetField(Hf,50.0,0,1) ' Pongo el campo final a 50 0e/sec 'CONTENZA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf Do 'mvseq:scanT.secp0003 Scan Temp DoEvents PPHS.GetField(Fld,fieldstate) PPHS.GetFreq.s) ReadFreq(Freq.s) Cet GPIE data using GPIE.GetString or similar Debug,Print Fld; Temp; Freq; 'mvseq:scanT.secp0003 Scan Temp d(0) = Timer d(1) = Temp d(0) = Timer d(1) = Temp d(2) = Fld d(3) = Freq fl.WriteLineArray("",d) Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final PFHS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero '.''PONGO LA T FINAL A 300K PFHS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End of main program End Sub </pre>	Hi Hf	. = -10000.0 'H inicial : = 10000.0000 'H final	-
<pre>'CONTENEA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf Do 'sveq:scanT.secp0003 Scan Temp DoBvents PPMS.GetField(fld,fieldstate) PPMS.GetField(fld,fieldstate) ReadFreq(freq,s) 'Get GPIB data using GPIB.GetString or similar Debug.Print Fld; Temp; Freq; 'sveq:scanT.secp0003 Scan Temp d(1) = Temp d(2) = Fld d(3) = Freq fl.WriteLineArray("",d) Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final PPMS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero ' 'PONGO LA T FINAL A 300K PPMS.SetTemperature(300,20.000000,0) Waitfor(1+2*0+4*0+0*0,10,0) 'Estabilizo T End of main program End Sub </pre>	PI	MS.SetField(Hf,50.0,0,1) ' Pongo el campo final a 50 Oe/sec	
Dd 'wyseq: scanT. seq>0003 Scan Temp DoEvents PPMS. GetField(Fld, fieldstate) PPMS. GetField(Fld, fieldstate) ReadFreq(Freq.s) 'Get GPIB data using GPIB.GetString or similar Debug.Print Fld; Temp; Freq; 'wyseq: scanT. seq>0003 Scan Temp d(0) = Timer d(1) = Timer d(2) = Fld d(3) = Freq fl.WriteLineArray(''',d) Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final PPMS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero ' 'PONGO LA T FINAL A 300K PPMS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End of main program End Sub	COMIN	NZA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va c	on Fld >=Hf
<pre> Loop While Fid <= 0.999*HE 'condicion de medida hasta que se llega al H final PPMS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero ' 'PONGO LA T FINAL A 300K PPMS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End Sub End Sub </pre>	Do	<pre>'nvseq:scanT.seq>0003 Scan Temp DoEvents PPMS.GetField(Fld,fieldstate) PPMS.GetTemperature(Temp,tempstate) ReadFreq(Freq,s) 'Get GPIB data using GPIB.GetString or similar Debug.Print Fld; Temp; Freq; 'mvseq:scanT.seq>0003 Scan Temp d(0) = Timer d(1) = Temp d(2) = Fld d(3) = Freq fl.WriteLineArray("",d)</pre>	
PPMS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero ' 'PONGO LA T FINAL A 300K PPMS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End of main program End Sub		Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final	
'PONGO LA T FINAL A 300K PPMS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End Sub	PI	MS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cero	
PPMS.SetTemperature(300,20.000000,0) WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T End Sub	' PONGO) LA T FINAL A 300K	
	P I Wa	MS.SetTemperature(300,20.000000,0) httFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T Fnd of main progra	am
	End Su		л іті ,
			1

20120524_P5389_300K (macro) - MultiVu Scripting [design]				
		 _		
Object: (General) Proc: Init	~			
1 End Sub				
2				
'ubject to encapsulate communication to the Agilent Frequencymeter				
Public Function Init() As Boolean 'function to initialize in Dim s As String	strument. It will return False if not s			
Dim result As Integer				
result = GPIB.AddDevice(Address, 13, 1) 'add Freq Meter to GPIB				
' +ud - device handle				
-101 - invalid argument				
-102 - GPIBO Not found				
-103 - device already connected				
' -104 - device Not found				
-105 - attempting To use PPMS				
0 - NI Error code				
-ni - Ni Erior code				
If (result < 0 And result <> -103) Then '< 0 indicates an error unless -10	3, which is already connected			
Init = False	· ·			
Exit Function				
End If Doutin	na ta initializa			
KOULI				
If GPIB.SendString(Address, "D")⇔1 Then				
the tr	eauency meter			
' Exit Function				
' If GPIB.SendString(Address, "EOI ON")<>1 Then				
' Init = False				
Exit Function				
' End If				
L If CDIP SendString(Address (WTIME 10)() Then				
Init = False				
' Exit Function				
' End If				
'it seems that we must also read a result after sending the clear command				
If GPIB.GetString(Address, s)⇔1 Then				
' Init = Faise				
' End If				
Init = True				
End Function				
	147			
2 2	20120524_P5389_300K (macro) - Mi	ltiVu Scripting [design]	. 🗆 🔼 👝	
------	--	---	----------	---
Ê	🛎 🖬 🕼 🎒 🐰 🖻 💼 🗅 😂 📍			
Obje	ect: (General)	Proc: Init	~	
1	End Function		<u>^</u>	
2	Public <mark>Function ConfigInput()</mark> Dim s As String	'FUNCTION to configure input		
	'Set input configuration to If GPIB.SendString(Address ConfigInput = False) 50 Ohm, AC, No filter , ":INP1:IMP 50;COUP AC;FILT OFF;")<>1 Then		
	Exit Function	Routine to configure		
	End If	the frequency motor		
	ConfigInput = True End Function	the frequency meter		
	Public <mark>Function ReadFreg(ByRef</mark> ' Dim ss As String	FreqData As Double, ByRef ss As String) As Boolean 'FUNCTION to read one fr	requen	
	'get a frequency reading ' If GPIB.SendString(3, "FU ' ReadFreq = False ' Exit Function	JC 'FREQ 1';:FREQ:ARM:STAR:SOUR IMM;:FREQ:ARM:STOP:SOUR TIM;:FREQ:ARM:STOP:TIM")⇔	>1 The	
	' End If			
	Wait(0.005)	'make sure we don't try to talk too fast!		
	'get a frequency reading If GPIB.SendString(3, ":R ReadFreq = False Exit Function End If	AD:FREQ?")<>1 Then		V
	Wait(2)	'make sure we don't try to talk too fast!		
	If GPIB.GetString(3, ss)<>. ReadFreq = False	Routine to read the		
	Exit Function End If	frequency meter value	5	
	Debug.Print 's=',ss; ' s = Mid\$(s,7,20)			
	FreqData = CDbl(ss) ReadFreq = True	'convert result to a double float and return i	=	
	End Function			
	Public Sub Abort()			
	End Sub		\	
<	<u> </u>			
			171	

Sequences for TS measurements

Sequences for TS measurements

- (1) Measurement of the frequency as a function of time
 - Only change the data file name
- (2) Measurement of the frequency as a function of field in sweep mode
 - Change data file name
 - Set T
 - Set Hi, Hf, ΔH
 - Specify if increasing or decreasing H
- (3) Measurement of the frequency as a function of temperature in sweep mode
 - Change data file name
 - Set H
 - Set Ti, Tf, ΔT
 - Specify if increasing or decreasing T

Sequences for TS measurements

(1) Measurement of the frequency as a function of time SICAgilent_scan(t).BAS

SICAgilent_scan(t) (macro) - MultiVu Scripting [design]	
Ê 🛎 🖬 🕼 🎒 🖄 🖺 💼 🗠 😂 🦉 🕨 Π 🗉 🕙 & ↔ 🖘 🗊 📮 🖼 😭	
Object: (General) Proc: Main	~
<pre>1 '#Uses "NVUData.cls" '#Uses "Utils\Utils.obm" Sub Main Const Address As Integer = 3 'GPIB address of instrument Debug.Clear Dim Fld As Double Dim Field As Double Dim fieldstate As Long Dim Temp As Double Dim tempstate As Long Dim Freq As Double</pre>	
Dim fl As New MVUData Dim d(4) As Double Dim result As Integer Change data file na	ame
<pre>result = GPIB.AddDevice(Address, 13, 1) 'add Freq Meter to GPIB 'create the first data file: include the path 'if the file already exists, this does nothing 'don't write the header again if file already exists!!! If fl.CreateFile("D:\Usuarios PPMS-9T\Adriana\XacTrans\CircuitoCMOS\20120612_M1266_f(t).dat") Then fl.WriteHeader("Susceptibility Data File", "Temperature (K),Field (0e),Frequency (Hz)") End If</pre>	
fl.MVUOpen 'ask mvu to open the file Wait(1) 'Inicializa frecuencimetro 'Init() 'Inicializa frecuencimetro 'ConfigInput() 'Configura frecuencimetro	
	>

Sequences for TS

(2) Measurement of the frequency as a function of field in sweep mode

-			
ject:	(General)	Proc: Main	~
1	'#Uses "MVUData.cls"		^
	'#Uses "Utils\Utils.obm"		
1 8	Sub Main		=
	Const Address As Integer = 3 'GPI	IB address of instrument	
	Debug.Clear		
	Dim Fld As Double		
	Dim Field As Double		
	Dim fieldstate As Long		
	Dim Temp As Double		
	Dim tempstate As Long		
	Dim Freq As Double		
	Dim fl As New MVUData		
	Dim d(4) As Double		
	result = GPIB.AddDevice(Address,	13, 1) 'add Freq Meter to GPIB	
	'Fichero de datos para ciclos ZFC		
	If fl.CreateFile("D:\Usuarios PPP	MS-9T\Adriana\XacTrans\CircuitoCMOS\20120612_M1266_5k0e_1T.	dat") Then
	fl.WriteHeader("Susceptibilit	ty Data File", "Temperature (K),Field (Oe),Frequency (Hz)")	
	End If		n
	fl.MVUOpen	'ask myu to open the file	
	Wait(1)		
1.1	' Init()	'Inicializa frecuencimetro	4.
	' ConfigInput()	'Configura frecuencimetro Chaptan data	file name
		Change data	me name
I.			
	·		
	' 'CICLO & 300K		
	'		~
•	' 'CICLO & 300K		

20120524 P5389 300K (macro) - MultiVu Scripting [design]	
Ibject: [General]	
'CICLO A 300K	· · · · · · · · · · · · · · · · · · ·
PPMS.SetTemperature(300,20.000000,0) Set temperature WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T Set temperature	
'AQUI COMIENZA EL CICLO HISTERESIS EN H 'PRIMERO SE DEFINEN LOS PARAMETROS, HI y Hf 'DENTRO DE LOS BUCLES DE MEDIDA HAY QUE CAMBIAR LA CONDICION < 0 > DEPENDIENDO DE SI HI es < o > que Hf	ſ
'TRAMO O A 1 T	
Hi = 0.0 'H inicial Initial parameters of the	5
Hf = 10000.0000 'H final measuring loop	
PPMS.SetField(Hi,180.0,0,1) ' ramp to field at 180 Oe/sec, linear mode, driven WaitFor(0+2*1+4*0+8*0,60,0) ' wait for field	
PPMS.SetField(Hf,100.0,0,1) ' Pongo el campo final a Set field ramp (100 Oe/	(s)
'COMIENZA EL BUCLE DE MEDIDA. PARA Hi < Hf, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld	d >=Hf
Do 'mvseq:scanT.seq>0003 Scan Temp DoEvents Measuring loop	
PPMS.GetField(Fld,fieldstate) PPMS.GetTemperature(Temp,tempstate) ReadFreq(Freq,s) 'Get GPIB data using GPIB.GetString or similar	
Debug.Print Fld; Temp; Freq; 'mvseq:scanT.seq>0003 Scan Temp d(0) = Timer	
d(1) = Temp $d(2) = Fld$	
d(3) = Freq fl.WriteLineArray("",d) 'write a line using an array	
Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final	[-
	>
	12

Sequences for TS measurements – H sweep at a fixed T

🗖 20120524_P5389_300K (macro) - MultiVu Scripti	ng [design]	
🖹 🍃 🗐 🎒 🐰 ங 📖 으 🗠 🦉 🕨 II		
Object: (General)	Proc: Main	~
1 2 Hi = 10000.0 Hf = -10000.0000	'H inicial 'H final I Initial parameters of the measuring loop	^
PPMS.SetField(Hf,50.0,0,1) ' Pongo (el campo final a Set field ramp (50 Oe/s)	
'COMIENZA EL BUCLE DE MEDIDA. PARA Hi < H:	f, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf	
Do 'nvseq:scanT.seq>0003 Scan Temp DoEvents PPMS.GetField(Fld,fieldstate) PBMS CetTemperature(Temp_tempstat)	Measuring loop	
ReadFreq(Freq, s) Debug.Print Fld; Temp; Freq; d(0) = Timer d(1) = Temp d(2) = Fld d(3) = Freq fl.WriteLineArray("",d)	'Get GPIB data using GPIB.GetString or similar 'mvseq:scanT.seq>0003 Scan Temp	=
Loop While Fld >= 0.999*Hf 'TRAMO -1T A 1 T	'condicion de medida hasta que se llega al H final	
Hi = -10000.0 Hf = 10000.0000	'H inicial 'H final	
PPMS.SetField(Hf,50.0,0,1) ' Pongo	el campo final a 50 Oe/sec	
'COMIENZA EL BUCLE DE MEDIDA. PARA HI < H	f, el Loop While va con Fld <= Hf. PARA Hi > Hf, el While va con Fld >=Hf	
Do 'mvseq:scanT.seq>0003 Scan Temp DoEvents		
PPMS.GetField(Fld,fieldstate) PPMS.GetTemperature(Temp.tempstate	e)	~
		110

Sequences for TS measurements – H sweep at a fixed T

201	120524_P5389_300K (macro) - MultiVu Scripting [design]
é	≆ 🖬 🕼 🚔 🙏 ≌ 🖷 💁 🖓 🕨 🗉 🖉 &ớ 🔸 🖼 📮 💷 😭
ject:	: (General) 🔽 Proc: Main
	<pre>'TRAMO -IT A 1 T Hi = -10000.0 Hf = 10000.0000 'H inicial 'H final 'H final 'H final 'H final ''H final '''' '''''''''''''''''''''''''''''''</pre>
	Do 'nvseq:scanT.seq>0003 Scan Temp DoEvents PPMS.GetField(Fld,fieldstate) PPMS.GetTemperature(Temp,tempstate) ReadFreq(Freq,s) 'Get GPIB data using GPIB.GetString or similar Debug.Print Fld; Temp; Freq; 'mvseq:scanT.seq>0003 Scan Temp d(0) = Timer d(1) = Temp d(2) = Fld d(3) = Freq fl.WriteLineArray("",d)
	Loop While Fld <= 0.999*Hf 'condicion de medida hasta que se llega al H final
	PPMS.SetField(0,180.0,0,1) 'Final del programa, pongo el campo a cer Set final H to O Oe ' 'PONGO LA T FINAL A 300K
	PPMS.SetTemperature(300,20.000000,0) Set final T to 300 K WaitFor(1+2*0+4*0+8*0,10,0) 'Estabilizo T
	End Sub
:	
	Sequences for TS measurements – H sweep at a fixed T

Sequences for TS

(3) Measurement of the frequency as a function of temperature in sweep mode

20110709_Gd2O3_SweepT * (macro) - MultiVu Scripting [design]	
B 😂 🖬 🗿 🎒 🐁 Ba 🖷 🕰 😂 😽 🕨 🗉 🧶 600 → 93 💷 🚝 🚍 😭	
Object: (General) Proc: Main	~
1 '#Uses "MVUData.cls" 2 '#Uses "Utils\Utils.obm" 3	
Sub Main Const Address As Integer = 3 'GPIB address of instrument	
Debug.Clear	
Dim Fld As Double Dim Field As Double Dim fieldstate As Long Dim Temp As Double	
Dim tempstate As Long Dim Freq As Double	
Dim fl As New MVUData Dim d(4) As Double	
Dim result As Integer result = GPIB.AddDevice(Address, 13, 1) 'add Freq Meter to GPIB	ange data file name
'create the first data file: include the path 'if the file already exists, this does nothing 'don't write the header again if file already exists!!!	
fl.WriteHeader("Susceptibility Data File", "Temperature (K), Field (0e), Fr. End If	equency (Hz)")
fl.MVUOpen 'ask mvu to open the file Wait(1)	
Г	

Object:	(General)		Proc: N	fain		~
1	CONDICIONES INCIALES DE C	AMPO MAGNÉTICO (quit	ar el comentario pa	ra usar, ')		<u> </u>
2	PPMS.SetField(0,180.0,0 WaitFor(0+2*1+4*0+8*0,6	,0) ' ramp to fiel 0,0) ' wait for fie	.d 10000 Oe at 180 O eld	e/sec, linear mode, 🖵	→ Set field	
	'LA ESPERA PARA EL CAMPO H 'SWITCH SUPERCONDUCTOR VE 'PASA AL SIGUIENTE COMANDO	AY QUE PONERLA DE 60 EL CAMPO COMO ESTABL SIN QUE EL CAMPO SE) SEGUNDOS, PORQUE M E Y SI LA ESPERA ES : ESTABILICE REALMEN	IENTRAS ESTA CALENTANDO Y 1 CORTA, TE	ENFRIANDO EL	≣
	'AQUI COMIENZA EL SCAN DE 'PRIMERO SE DEFINEN LOS PA 'DENTRO DE LOS BUCLES DE M	T RAMETROS, TI y TÉ EDIDA HAY QUE CAMBIA	AR LA CONDICION < 0	> DEPENDIENDO DE SI Ti es <	< o > que Tf	
	Ti = 10 Tf = 300	'T inicial 'T final		Initial parame	ters of the mea	asuring loop
	PPMS.SetTemperature(Ti WaitFor(1+2*0+4*0+8*0, Wait(1800)	,20.000000,0) 'Poner 10,0) 'Est	: la T de inicio del abilizo	scan		(10.14)
	PPMS.SetTemperature(Tf,	10.000000,0) 'Pongo	la temperatura fina	l a razon de 10 K/min 🛛	=⇒ Set I ra	amp (10 K/I
	'COMIENZA EL BUCLE DE MEDI	DA. PARA Ti < Tf, el	. Loop While va con	Temp <= Tf. PARA Ti > Tf,	el While va con Temp >=Tf	
	Do					
	'mvseq:scanT.seq>0 DoFvents	003 Scan Temp	$ \longrightarrow $	Measuring loc	qq	
	PPMS.GetField(Fld,	fieldstate)			1	
	PPMS.GetTemperatur ReadFreq(Freq,s)	e(Temp,tempstate)	'Get GPIB data us	ing GPIB.GetString or simi.	lar	
	Debug.Print B1; F1	d; Temp; Freq; s;	'mvseq:scanT.seq>	0003 Scan Temp		
	d(1) = Temp					
	d(2) = Fld d(3) = Freq					
	fl.WriteLineArray("",d)				
	' Get Current Tem	g an array perature 'mvse	eq:scanT.seq>0003 Sc	an Temp		
	Loop While Temp <= T	f 'condicion	n de medida hasta qu	e se llega a la T final		
	DDWS SetTemperature/Tf	20 000000 01 (Final	del programa popa	o lo T imigiol y otro T		
	Fras.sectemperature(II	,20.000000,0) Final	. dei programa, pong	o la l'inicial, u octa l		

Sequences for TS measurements – T sweep at a fixed H

Probing magnetic anisotropy effects in epitaxial CrO₂ thin films

[8] L. Spinu, H. Srikanth, A. Gupta, X. W. Li, and Gang Xiao. Phys. Rev. B. 62, 8931 (2000)

Probing magnetic anisotropy effects in epitaxial CrO₂ thin films

[8] L. Spinu, H. Srikanth, A. Gupta, X. W. Li, and Gang Xiao. Phys. Rev. B. 62, 8931 (2000)

Coating effect in the magnetic anisotropy of $Fe_{3-x}O_4$ NPs probed by RF – TS

Oleic acid coated

SiO₂ coated

Coating effect in the magnetic anisotropy of $Fe_{3-x}O_4$ NPs probed by RF – TS

Coating effect in the magnetic anisotropy of $Fe_{3-x}O_4$ NPs probed by RF – TS

Oleic acid coated 5 nm samples

Coating effect in the magnetic anisotropy of $Fe_{3-x}O_4$ NPs probed by RF – TS

 $K = 1.8 \times 10^5 \text{ erg/cm}^3$ from data @ 5K for the oleic acid coated samples

Práctica

Medida de TS en nanopartículas de magnetita (Fe₃O₄)

